释义 |
hyperbolic functionn.Mathematics(名词)【数学】- Any of a set of six functions related, for a real variablez, to the hyperbola in a manner analogous to the relationship of the trigonometric functions to a circle, including: 双曲线函数:相关的六种函数中的任何一个,一个真变量z, 与双曲线的关系跟三角涵数与一个圆周的关系一样包括
- The hyperbolic sine, defined by the equation sinhz = ½( e z - e - z ). 双曲正弦:正弦函数,由正弦方程式z =½( e z - e - z )定义
- The hyperbolic cosine, defined by the equation coshz = ½( e z + e - z ). 双曲余弦:余弦函数,由余弦公式z = ½( e z + e - z )定义
- The hyperbolic tangent, defined by the equation tanhz = sinh z /cosh z. 双曲正切:正切函数,由正切公式z =sinh z /cosh z 定义
- The hyperbolic cotangent, defined by the equation cothz = cosh z /sinh z. 双曲余切:余切函数,由余切公式z =cosh z /sinh z 定义
- The hyperbolic secant, defined by the equation sechz = 1/cosh z. 双曲正割:正割函数,由正割公式z =1/cosh z
- The hyperbolic cosecant, defined by the equation cschz = 1/sinh z. 双曲余割:余割函数,由余割公式z =1/sinh z
|